Linear Programming Lecturer : Michel
نویسنده
چکیده
Linear programming is a very important class of problems, both algorithmically and combinatorially. Linear programming has many applications. From an algorithmic point-of-view, the simplex was proposed in the forties (soon after the war, and was motivated by military applications) and, although it has performed very well in practice, is known to run in exponential time in the worst-case. On the other hand, since the early seventies when the classes P and NP were defined, it was observed that linear programming is in NP∩ co-NP although no polynomial-time algorithm was known at that time. The first polynomial-time algorithm, the ellipsoid algorithm, was only discovered at the end of the seventies. Karmarkar’s algorithm in the mid-eighties lead to very active research in the area of interior-point methods for linear programming. We shall present one of the numerous variations of interior-point methods in class. From a combinatorial perspective, systems of linear inequalities were already studied at the end of the last century by Farkas and Minkovsky. Linear programming, and especially the notion of duality, is very important as a proof technique. We shall illustrate its power when discussing approximation algorithms. We shall also talk about network flow algorithms where linear programming plays a crucial role both algorithmically and combinatorially. For a more in-depth coverage of linear programming, we refer the reader to [1, 4, 7, 8, 5]. A linear program is the problem of optimizing a linear objective function in the decision variables, x1 . . . xn, subject to linear equality or inequality constraints on the xi’s. In standard form, it is expressed as:
منابع مشابه
Linear programming Lecturer : Michel Goemans 1 Basics
Linear Programming deals with the problem of optimizing a linear objective function subject to linear equality and inequality constraints on the decision variables. Linear programming has many practical applications (in transportation, production planning, ...). It is also the building block for combinatorial optimization. One aspect of linear programming which is often forgotten is the fact th...
متن کاملRegularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz. Necessary optimality conditions and regularity conditions are given. Our approach are based on the Michel-Penot subdifferential.
متن کاملLectures 9 and 10 Lecturer : Michel
1 Semidefinite programming Let Sn×n be the set of n by n real symmetric matrices. Definition 1 A ∈ Sn×n is called positive semidefinite, denoted A 0, if xAx ≥ 0 for any x ∈ R. There are several well-known equivalent ways to state positive semidefiniteness. Proposition 1 The following are equivalent: (i) A is positive semidefinite. (ii) Every eigenvalue of A is nonnegative. (iii) There is a matr...
متن کاملB2B electronic market analysis using game theory
In the explosive growth of Business to Business (B2B) Electronic Trades, electronic markets have received a great deal of attention recently. The obtained profit of trading in E-B2B market encourage market participants to remain in the market. Market participants consist of: sellers, buyers, and market owner. In this paper the expected profit function for each market participant has been define...
متن کاملSolving fuzzy stochastic multi-objective programming problems based on a fuzzy inequality
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty.In this paper, we focus on multi-objective linear programmingproblems in which the coefficients of constraints and the righthand side vector are fuzzy random variables. There are several methodsin the literature that convert this problem to a stochastic or<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997